Determination Approach of Dislocation Density and Crystallite Size Using a Convolutional Multiple Whole Profile Software

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dislocation structure and crystallite size-distribution in hexagonal nanomaterials from X-ray peak profile analysis

The microstructure of three different nanocrystalline materials with hexagonal crystal structure are studied by X-ray diffraction peak profile analysis. The crystallite size distribution and the dislocation structure are determined in plasmathermal silicon nitride powder, sintered tungsten carbide and severely deformed titanium and are compared with transmission electron microscopy (TEM) result...

متن کامل

Evolution of Texture and Dislocation Distributions in High-ductile Austenitic Steel during Deformation

Fe-Mn-C austenitic steels exhibit outstanding high-ductile deformation in their plastic regions along with significant microstructural evolution. In this study, to characterize the microstructural evolution during deformation of these steels, line-profile and texture analyses were carried out using X-ray diffraction. The convolutional multiple whole profile fitting procedure was used for a line...

متن کامل

Crystallite Size Measurement Using X- Ray Diffraction

Mike Meier University of California, Davis September 13, 2004 Figure 1. FEG-SEM image of nanosized aluminum oxide powder. Note the magnification and the size of the micron bar. Also note how the smaller particles and the edges of the larger particles appear to be somewhat transparent. This is because much of the 5 kV electron beam can pass through these thinner parts of the particles. CRYSTALLI...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATERIALS TRANSACTIONS

سال: 2018

ISSN: 1345-9678,1347-5320

DOI: 10.2320/matertrans.m2017380